Муниципальное общеобразовательное учреждение «Средняя школа № 86 Тракторозаводского района Волгограда»

Выписка из основной образовательной программы среднего общего образования

Рабочая программа учебного курса по химии 10-11 класс

Выписка верна 30.08.2024 Директор

Е.П. Дьячкова

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа учебного курса по химии на уровне среднего общего образования разработана на основе Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», требований к результатам освоения федеральной образовательной программы среднего общего образования (ФОП СОО), представленных в Федеральном государственном образовательном стандарте СОО, с учётом Концепции преподавания учебного предмета «Химия» в образовательных организациях Российской Федерации, реализующих основные образовательные программы, и основных положений «Стратегии развития воспитания в Российской Федерации на период до 2025 года» (Распоряжение Правительства РФ от 29.05. 2015 № 996 - р.).

Основу подходов к разработке программы по химии, к определению общей стратегии обучения, воспитания и развития обучающихся средствами учебного предмета «Химия» для 10–11 классов на базовом уровне составили концептуальные положения ФГОС СОО о взаимообусловленности целей, содержания, результатов обучения и требований к уровню подготовки выпускников.

Составляющими учебного курса являются базовые курсы — «Органическая химия» и «Общая и неорганическая химия», основным компонентом содержания которых являются основы базовой науки: система знаний по неорганической химии (с включением знаний из общей химии) и органической химии.

Структура содержания учебных курсов «Органическая химия» и «Общая и неорганическая химия» сформирована на основе системного подхода к изучению учебного материала.

Единая система знаний о важнейших веществах, их составе, строении, свойствах и применении, а также о химических реакциях, их сущности и закономерностях протекания дополняется в курсах 10 и 11 классов элементами содержания, имеющими культурологический и прикладной характер. Эти знания способствуют пониманию взаимосвязи химии с другими науками, раскрывают её роль в познавательной и практической деятельности человека, способствуют воспитанию уважения к процессу творчества в области теории и практических приложений химии, помогают выпускнику ориентироваться в общественно и личностно значимых проблемах, связанных с химией, критически осмысливать информацию и применять её для пополнения знаний, решения интеллектуальных и экспериментальных исследовательских задач.

Главными целями учебного курса по химии являются:

- формирование системы химических знаний как важнейшей составляющей естественно-научной картины мира;
- формирование и развитие представлений о научных методах познания веществ и химических реакций, необходимых для приобретения умений

- ориентироваться в мире веществ и химических явлений, имеющих место в природе, в практической и повседневной жизни;
- развитие умений и способов деятельности, связанных с наблюдением и объяснением химического эксперимента, соблюдением правил безопасного обращения с веществами.

В учебном плане среднего общего образования учебный курс по химии входит в состав предметной области «Естественно-научные предметы».

Общая характеристика курса

Содержание учебного курса химии в средней (полной) школе строится на основе изучения состава и строения веществ, зависимости их свойств от строения, практического значения этих свойств, а также способов лабораторного и промышленного получения важнейших веществ, изучения закономерностей химических процессов и путей управления ими. Основные содержательные линии рабочей программы:

- «*Вещество*» система знаний о составе и строении веществ, их свойствах и биологическом значении;
- «Химическая реакция» система знаний об условиях протекания химических процессов и способах управления ими;
- «Применение веществ» система знаний о практическом применении веществ на основе их свойств и их значения в бытовой и производственной сферах;
- «Получение веществ» система знаний о химических производственных процессах;
- «Язык химии» система знаний о номенклатуре неорганических о органических соединений и химической терминологии, а также умение отражать их с помощью химической символики (знаков, формул и уравнений); навыков перевода информации с языка химии на естественный и обратно
- «Количественные отношения» система расчётных умений и навыков для характеристики взаимосвязи качественной и количественной сторон химических объектов (веществ, материалов и процессов);

• «*Теория и практика*» — взаимосвязь теоретических знаний и химического эксперимента как критерия истинности и источника познания.

Общее число часов, отведённых для изучения химии в рамках учебного курса составляет 136 часов: в 10 классе –68 часов (2 часа в неделю), в 11 классе –68 часов (2 часа в неделю).

Результаты освоения курса

Деятельность учителя направлена на достижение обучающимися следующих личностных результатов:

- 1) в ценностно-ориентационной сфере *осознание* российской гражданской идентичности, чувства гордости за российскую химическую науку;
- 2) в трудовой сфере *готовность* к осознанному выбору дальнейшей образовательной траектории;
- 3) в познавательной (когнитивной, интеллектуальной) сфере *умение* управлять своей познавательной деятельностью, *готовность и способность* к образованию, в том числе самообразованию, на протяжении всей жизни; *формирование* навыков экспериментальной и исследовательской деятельности;
- 4) в сфере здоровьесбережения *принятие и реализация* ценностей здорового и безопасного образа жизни, *неприятие* вредных привычек; соблюдение правил техники безопасности в процессе работы с веществами, материалами в учебной (научной) лаборатории и на производстве.

Метапредметными результатами являются:

- 1) *использование* умений и навыков различных видов познавательной деятельности, применение основных методов познания для изучения различных сторон окружающей действительности;
- 2) владение основными интеллектуальными операциями: формулировка сравнение и систематизация, обобщение гипотез, анализ И синтез, и конкретизация, выявление причинно-следственных связей поиск аналогов;
- 3) познание объектов окружающего мира от общего через особенное к единичному;

- 4) умение генерировать идеи и определять средства, необходимые для их реализации;
- 5) умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- 6) *использование* различных источников для получения информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата;
- 7) *умение* продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 8) *готовность* и способность к самостоятельной информационнопознавательной деятельности, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 9) *умение* использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач;
- 10) *владение* языковыми средствами, включая и язык химии умение ясно, логично и точно излагать свою точку зрения.

Предметными результатами являются:

- 1) знание (понимание) характерных признаков важнейших химических понятий;
- 2) выявление взаимосвязи химических понятий для объяснения состава, строения, свойств отдельных химических объектов и явлений;
- 3) применение основных положений химических теорий для анализа состава, строения и свойств веществ и протекания химических реакций;
- 4) *умение классифицировать* неорганические и органические вещества по различным основаниям;
- 5) *установление взаимосвязей* между составом, строением, свойствами, практическим применением и получением важнейших веществ;
- 6) *знание основ химической номенклатуры и умение* назвать неорганические и органические соединения по формуле, и наоборот;

7) *определение:* валентности, степени окисления химических элементов, зарядов ионов; видов химических связей в соединениях и типов кристаллических решёток; пространственного строения молекул; типа гидролиза и характера среды водных растворов солей; окислителя и восстановителя; процессов окисления и восстановления, принадлежности веществ к различным классам неорганических и органических соединений; гомологов и изомеров; типов, видов и разновидностей химических реакции в неорганической и органической химии;

8) умение характеризовать:

- элементы по их положению в периодической системе Д. И. Менделеева;
- общие химические свойства простых веществ металлов и неметаллов;
- химические свойства основных классов неорганических и органических соединений в плане общего, особенного и единичного;

9) объяснение:

- зависимости свойств химических элементов и их соединений от положения
 элемента в периодической системе Д. И. Менделеева;
- природы химической связи (ионной, ковалентной, металлической, водородной);
- зависимости свойств неорганических и органических веществ от их состава и строения;
- сущности изученных видов химических реакций: электролитической диссоциации, ионного обмена, окислительно-восстановительных;
- влияния различных факторов на скорость химической реакции и на смещение химического равновесия;
- механизмов протекания реакций между органическими и неорганическими веществами;

10) умение:

- составлять уравнения окислительно-восстановительных реакций с помощью метода электронного баланса;
- проводить расчёты по химическим формулам и уравнениям;

проводить химический эксперимент (лабораторные и практические работы)
 с соблюдением требований к правилам техники безопасности при работе в
 химическом кабинете (лаборатории).

Содержание курса

Курс делится на две части соответственно годам обучения: органическую химию (10 класс) и общую химию (11 класс).

Курс 10 класса начинается с изучения теории строения органических соединений А. М. Бутлерова и гибридизации атомных орбиталей. Затем рассматриваются классификация органических соединений, принципы их номенклатуры, а также классификация реакций в органической химии.

Первоначальные теоретические знания далее многократно закрепляются и развиваются при изучении классов органических соединений от углеводородов до азотсодержащих соединений и полимеров.

Такое построение курса позволяет в полной мере позволяет реализовать идею генетической связи между классами органических соединений.

Особое внимание в курсе органической химии уделено сложным для понимания вопросам: взаимному влиянию атомов в молекулах, в том числе для предсказания свойств соединений; механизмам и закономерностям протекания химических реакций, что необходимо для прогнозирования продуктов; пространственному строению углеводов, аминов, аминокислот, белков и нуклеиновых кислот.

Курс 11 класса начинается с рассмотрения сложного строения атома на основе квантово-механических представлений о строении его ядра и электронной оболочки, а также ядерных реакций. Такая теоретическая база позволяет на другом уровне изучить периодический закон и периодическую систему химических элементов Д. И. Менделеева.

Знания о строении вещества, об основных типах химической связи дополняются сведениями о комплексных соединениях и дисперсных системах.

Изучение основ химической термодинамики, понятий об энтальпии и энтропии, законов Гесса, позволяют на более высоком уровне изучить закономерности протекания химических реакций и физико-химических процессов.

Химические реакции в растворах рассматриваются также на новом теоретическом уровне после введения понятия о водородном показателе. Обобщаются сведения о неорганических и органических кислотах и основаниях в свете теории электролитической диссоциации, а также солей в свете теории электролитической диссоциации.

Отдельная глава посвящена окислительно-восстановительным процессам, в том числе методам составления уравнений и электролизу, которые важны для успешной сдачи итогового экзамена. Большое внимание в этой главе уделено и химическим источникам тока, без которых сложно представить современное общество.

Химия неметаллов и металлов, важнейших представителей этих классов веществ и их соединений изучается в системе (состав ↔ строение ↔ свойства ↔ применение ↔ получение ↔ нахождение в природе) и рассматривется в единой связи органической и неорганической химии. Таким образом реализуется главная идея курса — единство живого и неживого материального мира, описываемого общими законами химии.

Раскрыть роль химической науки, как производительной силы современного общества позволяет завершающая глава курс 11 класса «Химия и общество».

Органическая химия. 10 класс

Введение. НАЧАЛЬНЫЕ ПОНЯТИЯ ОРГАНИЧЕСКОЙ ХИМИИ (2ч)

Сравнение неорганических и органических веществ. Способность атомов углерода соединяться в различные цепи. Углеводороды и их производные. Понятие о заместителе.

ТЕМА 1. Строение и классификация органических соединений. (6ч)

Понятие валентности. Работы Ф. А. Кекуле. Роль А. М. Бутлерова в создании теории строения органических соединений. Причины многообразия органических соединений: образование одинарных, двойных и тройных связей между атомами углерода. Изомерия. Эмпирическая, молекулярная и структурная формулы органических соединений.

Концепция гибридизации атомных орбиталей. Строение атома углерода: *s*- и *p*- орбитали, типы их гибридизации. Образование ковалентных связей. Электронная и электронно-графическая формулы атома углерода.

Классификация органических соединений: по элементному составу, по строению углеродного скелета, по наличию функциональных групп (гидроксильная, карбонильная, карбоксильная, нитрогруппа, аминогруппа). Спирты. Альдегиды. Кетоны. Карбоновые кислоты. Нитросоединения. Амины.

Принципы номенклатуры органических соединений. Номенклатура тривиальная (историческая) и рациональная.

Международная номенклатура органических соединений — IUPAC. Принципы составления названия органического соединения по номенклатуре IUPAC.

Самостоятельная работа №1. Строение и классификация органических соединений.

ТЕМА 2. Химические реакции в органической химии.

Понятие о субстрате и реагенте. Классификация реакций по структурным изменениям вещества: присоединения (в том числе полимеризации, отщепления (элеменирования), замещения и изомеризации.

Классификация реакций по типу реакционных частиц: радикальные, электрофильные и нуклеофильные.

Классификация реакций по частным признакам: галогенирование и дегалогенирование, гидрирование и дегидрирование, гидратации и дегидратации, гидрогалогенирование и дегидрогалогенирование.

Демонстрации. Коллекция органических веществ, материалов и изделий из них. Демонстрационная таблица «Различные гибридные состояния атома углерода». Модели органических соединений с различными функциональными группами. Обесцвечивание бромной воды этиленом.

Лабораторный опыт. Изготовление моделей молекул — представителей различных классов органических соединений.

ТЕМА 3. УГЛЕВОДОРОДЫ (23 ч)

Предельные углеводороды (5/23 ч)

Алканы. Гомологический ряд алканов и их изомерия. Номенклатура алканов.

Промышленные способы получения алканов: крекинг нефтепродуктов, реакция

алкилирования, получение синтетического бензина, нагревание углерода в атмосфере водорода. Лабораторные способы получения алканов: реакция Вюрца, пиролиз солей карбоновых кислот со щелочами, гидролиз карбида алюминия.

Механизм реакций радикального замещения. Реакции радикального замещения: галогенирование и нитрование. Реакции дегидрирования. Реакции окисления. Другие реакции с разрушением углеродной цепи.

Циклоалканы. Гомологический ряд и строение циклоакланов. Их номенклатура и изомерия. Понятие о пространственной изомерии. Способы получения циклоалканов: ректификация нефти, каталитическое дегидрирование аренов, внутримолерулярная реакция Вюрца.

Демонстрации. Шаростержневые модели молекул алканов для иллюстрации свободного вращения вокруг связи С—С, а также заслонённой и заторможенной конформаций этана.

Практическая работа «Качественный анализ органических соединений».

Непредельные углеводороды (13/23 ч)

Алкены. Гомологический ряд и изомерия алкенов (углеродного скелета, геометрическая или *цис-транс*-изомерия, положения двойной связи, межклассовая). Номенклатура алкенов.

Промышленные и лабораторные способы получения алкенов.

Прогноз реакционной способности алкенов. Механизм реакций электрофильного присоединения.

Реакции присоединения алкенов: галогенирование, гидрирование, гидрогалогенирование, гидратация, полимеризация. Правило Марковникова. Реакции окисления алкенов КМпО₄ (реакция Вагнера) в водной и сернокислой среде. Применение алкенов на основе свойств.

Высокомолекулярные соединения. Стереорегулярные и нестереорегулярные полимеры. Отношение полимеров к нагреванию: термопластичные и термореактивные полимеры.

Полимеры на основе этиленовых углеводородов и их производных: полиэтилен, полипропилен, политетрафторэтилен и поливинилхлорид.

Алкадиены. Классификация диеновых углеводородов: изолированные, кумулированные и сопряжённые.

Способы получения алкадиенов: дегидрирование алканов, реакция Лебедева, дегидрогалогенирование дигалогеналканов.

Химические свойства диеновых углеводородов: реакции присоединения, окисления и полимеризации — и особенности их протекания. Синтетические каучуки: бутадиеновый каучук (СБК), дивиниловый, изопреновый, хлоропреновый, бутадиен-стирольный. Вулканизация каучуков: резины и эбонит.

Алкины. Электронное и пространственное строение молекулы ацетилена.

Гомологический ряд и изомерия алкинов (углеродного скелета, положения тройной связи, межклассовая). Номенклатура алкинов.

Способы получения алкинов: пиролиз метана (в том числе и окислительный пиролиз природного газа), карбидный метод, дегидрогалогенирование дигалогеналканов, взаимодействие солей ацетиленовых углеводородов (ацетиленидов) с галогеналканами.

Химические свойства. Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация, тримеризация ацетилена). Полимеры на основе ацетилена.

Демонстрации. Объёмные модели *цис-, транс-*изомеров алкенов. Ознакомление с коллекцией «Каучуки и резины». Получение ацетилена из карбида кальция. Ознакомление с коллекцией полимерных образцов пластмасс и волокон.

Самостоятельная работа 2. Предельные и непредельные углеводороды.

ТЕМА 4. АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ (5/23ч)

Арены. Строение молекулы бензола: единая π -электронная система, или ароматический секстет.

Изомерия взаимного расположения заместителей в бензольном кольце. Номенклатура аренов. Промышленные и лабораторные способы получения бензола и его гомологов.

Реакции электрофильного замещения и их механизм: галогенирование, алкилирование (реакция Фриделя—Крафтса), нитрование, сульфирование.

Реакции присоединения: гидрирование, радикальное галогенирование. Реакции

окисления.

Толуол, как гомолог бензола. Ориентанты первого и второго рода. Взаимное влияние атомов .

Демонстрации. Шаростержневые и объёмные модели бензола и его гомологов. Практическая работа №2 Углеводороды.

TEMA 4.

ГИДРОКСИЛСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ ВЕЩЕСТВА (7/23 ч)

Спирты. Классификация спиртов: по типу углеводородного радикала, по числу гидроксильных групп в молекуле, по типу углеродного атома, связанного с гидроксильной группой.

Изомерия (положения функциональной группы, углеродного скелета, межклассовая) и номенклатура алканолов.

Общие способы получения алканолов. Прогноз реакционной способности предельных одноатомных спиртов и его подтверждение при рассмотрении химических свойств спиртов: кислотные свойства, реакции нуклеофильного замещения с галогеноводородами, межмолекулярная и внутримолекулярная дегидратация (получение простых эфиров и алкенов), реакции дегидрирования, окисления и этерификации.

Многоатомные спирты. Особенности химических свойств многоатомных спиртов. Качественная реакция на многоатомные спирты. Этиленгликоль и глицерин, как представители многоатомных спиртов. Их применение.

Фенолы. Атомность фенолов. Гомологический ряд, изомерия и номенклатура фенолов.

Способы получения фенола: из каменноугольной смолы, кумольный способ, из галогенаренов и методом щелочного плава.

Химические свойства фенола: кислотные свойства, окисление, реакции электрофильного замещения (галогенирование, нитрование), поликонденсация. Качественные реакции на фенол: с бромной водой и раствором хлорида железа(III). Применение фенолов.

Демонстрации. Шаростержневые модели молекул одноатомных и многоатомных спиртов.

Практическая работа № 3. Спирты и фенолы. Исследование свойств спиртов.

TEMA 5.

АЛЬДЕГИДЫ И КЕТОНЫ (6/23 ч)

Альдегиды. Альдегиды как карбонильные органические соединения. Гомологический ряд, изомерия и номенклатура альдегидов.

Химические свойства: реакции присоединения (гидросульфита натрия, реактива Гриньяра, гидрирование), реакции окисления (серебряного зеркала и комплексами меди(II))

Кетоны. Кетоны как карбонильные соединения. Особенности состава и электронного строения их молекул.

Химические свойства: реакции присоединения (гидросульфита натрия, реактива Гриньяра, гидрирование), реакции окисления, реакции замещения.

Лабораторные опыты. Получение уксусного альдегида окислением этанола. Ознакомление с физическими свойствами альдегидов (ацетальдегида и водного раствора формальдегида). Реакция «серебряного зеркала». Реакция с гидроксидом меди(II) при нагревании. Отношение ацетона к воде. Ацетон как органический растворитель.

Практическая работа 4. Альдегиды и кетоны. Исследование свойств альдегидов и кетонов.

Самостоятельная работа №3. Спирты и фенолы. Карбонильные соединения.

TEMA 6.

КАРБОНОВЫЕ КИСЛОТЫ И ИХ ПРОИЗВОДНЫЕ (9 ч)

Карбоновые кислоты. Классификация карбоновых кислот: по природе углеводородного радикала, по числу карбоксильных групп. Электронное и пространственное строение карбоксильной группы.

Получение карбоновых кислот окислением алканов, алкенов, первичных спиртов и альдегидов, а также гидролизом (тригалогеналканов, нитрилов).

Получение муравьиной кислоты взаимодействием гидроксида натрия с оксидом углерода (II), уксусной — карбонилированием метилового спирта и брожением этанола, пропионовой — карбонилированием этилена.

Общие свойства кислот. Реакции по углеводородному радикалу. Образование функциональных производных. Реакция этерификации. Образование галогенангидридов, ангидридов, амидов, нитрилов.

Муравьиная и уксусная кислоты, как представители предельных одноосновных карбоновых кислоты. Пальмитиновая и стеариновая кислоты, как представители высших предельных одноосновных карбоновых кислот.

Соли карбоновых кислот. Мыла. Химические свойства солей карбоновых кислот: гидролиз по катиону, реакции ионного обмена, пиролиз, электролиз водных растворов. Мыла. Жёсткость воды и способы её устранения.

Сложные эфиры. Способы получения сложных эфиров: реакция этерификации, взаимодействие спиртов с ангидридами или галогенангидридами кислот реакцией поликонденсации на примере получения полиэтилентерефталата.

Демонстрации. Шаростержневые модели молекул карбоновых кислот. Таблица «Классификация карбоновых кислот». Сравнение моющих свойств хозяйственного мыла и СМС в жёсткой воде. Шаростержневые модели молекул сложных эфиров и изомерных им карбоновых кислот. Отношение сливочного, подсолнечного, машинного масел и маргарина к водным растворам брома и КМпО₄.

Лабораторные опыты. Ознакомление с физическими свойствами некоторых предельных одноосновных кислот: муравьиной, уксусной, масляной. Отношение различных кислот к воде. Взаимодействие раствора уксусной кислоты: с металлом; оксидом металла (CuO); гидроксидом металла (Cu(OH)₂ или Fe(OH)₃), солью, (Na₂CO₃ и раствором мыла). Выведение жирного пятна с помощью сложного эфира. Растворимость жиров в воде и органических растворителях.

Практическая работа 5. Исследование свойств карбоновых кислот и их производных.

Самостоятельная работа №4 Карбоновые кислоты и их производные.

TEMA 7.

УГЛЕВОДЫ (4ч)

Углеводы. Классификация углеводов: моно- ди-, олиго- и полисахариды; кетозы и альдозы; тетрозы, пентозы, гексозы. Восстанавливающие и невосстанавливающие углеводы.

Моносахариды. Циклические формы глюкозы и их отражение с помощью формул Хеуорса. Химические свойства: реакции по альдегидной и по гидроксильным группам. Спиртовое, молочнокислое и маслянокислое брожения

глюкозы.

Фруктоза как изомер глюкозы. Структура и физические и химические свойства.

Дисахариды. Сахароза. Производство сахарозы из сахарной свёклы. Химические свойства сахарозы. Лактоза и мальтоза как изомеры сахарозы. Их свойства и значение.

Полисахариды. Крахмал. Состав и строение его молекул. Строение молекул целлюлозы. Свойства целлюлозы: образование сложных эфиров и продуктов алкилирования. Нитраты и ацетаты целлюлозы — основа получения взрывчатых веществ и искусственных волокон.

Демонстрации. Реакция «серебряного зеркала» для глюкозы. Отношение растворов сахарозы и мальтозы к гидроксиду меди(II).

Лабораторные опыты. Ознакомление с физическими свойствами глюкозы. Взаимодействие глюкозы с гидроксидом меди(II) при комнатной температуре и при нагревании. Кислотный гидролиз сахарозы. Качественная реакция на крахмал. Ознакомление с коллекцией волокон.

Практическая работа 6. Углеводы. Исследование свойств углеводов.

TEMA 8.

АЗОТСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ (5 ч)

Амины. Классификация аминов: по числу углеводородных радикалов и по их природе. Электронное и пространственное строение молекул аминов. Гомологический ряд, изомерия и номенклатура ароматических аминов.

Способы получения аминов.

Прогноз реакционной способности аминов на основе их электронного строения. Химические свойства аминов, как органических оснований.

Аминокислоты. Аминокислоты как амфотерные органические соединения: взаимодействие с кислотами и щелочами, образование биполярного иона. Реакции этерификации и конденсации. Пептидная связь и полипептиды.

Белки. Свойства белков: денатурация, гидролиз, качественные реакции. Биологические функции белков.

Нуклеиновые кислоты. Понятие об азотистых основаниях. Нуклеотиды и их состав. Сравнение ДНК и РНК и их роль в передачи наследственных признаков организмов и биосинтезе белка.

Демонстрации. Растворение и осаждение белков. Денатурация белков. Качественные реакции на белки.

Лабораторные опыты. Растворение белков в воде и их коагуляция. Обнаружение белка в курином яйце и молоке.

Практическая работа 7. Амины. Аминокислоты. Белки.

Практическая работа 8. Идентификация органических соединений.

TEMA 9.

БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА. (2 часа)

В и т а м и н ы. Нормы потребления витаминов. Водорастворимые (на примере витамина С) и жирорастворимые (на примере витаминов А и D) витамины. Профилактика авитаминозов.

Ферменты. Особенности строения и свойств ферментов: селективность и эффективность. Зависимость активности фермента от температуры и рН среды.

Г о р м о н ы. Классификация гормонов: стероиды, производные аминокислот, полипептидные и белковые гормоны. Отдельные представители гормонов: эстрадиол, тестостерон, инсулин, адреналин.

Лекарства. Группы лекарства сульфамиды (стрептоцид), антибиотики (пенициллин), аспирин. Безопасные способы применения, лекарственные формы. Антибиотики, их классификация по строению, типу и спектру действия. Дисбактериоз. Наркотики, наркомания и ее профилактика.

Демонстрации. Иллюстрации фотографий животных с различными формами авитаминозов. Сравнение скорости разложения H2O2 под действием фермента (каталазы) и неорганических катализаторов (KI, FeCl₃, MnO₂). Белковая природа инсулина (цветные реакции на белки).

Лабораторные опыты. Обнаружение витамина А в растительном масле. Обнаружение витамина С в яблочном соке. Обнаружение витамина D в желтке куриного яйца. Ферментативный гидролиз крахмала под действием амилазы. Разложение пероксида водорода под действием каталазы.. Обнаружение аспирина в готовой лекарственной форме (реакцией гидролиза или цветной реакцией с сульфатом бериллия).

Общая химия. 11 класс

TEMA 1.

СТРОЕНИЕ АТОМА. ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА. (6 ч).

Строение атома. Сложное строение атома.

Корпускулярно-волновой дуализм электрона. Понятие электронной орбитали и электронного облака. s-, p-, d- и f-орбитали. Квантовые числа. Строение электронной оболочки атома.

Порядок заполнения электронами атомных орбиталей в соответствии с принципом минимума энергии, запретом Паули, правилом Хунда, правилом Клечковского. Электронные формулы атомов и ионов.

Периодический закон Д. И. Менделеева. Менделеевская формулировка периодического закона. Взаимосвязь периодического закона и теории строения атома. Современная формулировка периодического закона.

Взаимосвязь периодического закона и периодической системы. Физический смысл символики периодической системы.

Периодичность их изменения металлических и неметаллических свойств элементов в группах и периодах, как функция строения электронных оболочек атомов.

Демонстрации. Модели орбиталей различной формы. Различные варианты таблиц периодической системы химических элементов Д. И. Менделеева.

TEMA 2.

ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВА (10 ч)

Химическая связь. Основные характеристики химической связи: энергия, длина, дипольный момент.

Зависимость физических свойств веществ от типа кристаллической решетки.

Возбуждённое состояние атома. Обменный механизм образования ковалентной связи. Электроотрицательность. Направленность ковалентной связи, её кратность. σ - и π - связи. Донорно-акцепторный механизм образования ковалентной связи.

Комплексные соединения. Строение комплексных соединений: комплексообразователь и координационное число, лиганды, внутренняя и внешняя сферы.

Номенклатура комплексных соединений и их свойства. Диссоциация комплексных соединений. Значение комплексных соединений и их роль в природе.

Межмолекулярные взаимодействия. Водородная связь и её разновидности: межмолекулярная и внутримолекулярная. Физические свойства веществ с водородной связью.

Демонстрации. Модели кристаллических решёток с ионной связью. Модели кристаллических веществ атомной и молекулярной структуры.

TEMA 3.

ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ И ФИЗИКО-ХИМИЧЕСКИХ ПРОЦЕСОВ (17 ч)

Основы химической термодинамики. Химическая термодинамика. Термодинамическая система. Открытая, закрытая, изолированная системы. Внутренняя энергия системы. Термохимическое уравнение.

Энтальпия. Стандартная энтальпия. Расчёт энтальпии реакции. Энтропия. Свободная энергия Гиббса.

Скорость химических реакций. Факторы, влияющие на скорость гомогенной реакции. Факторы, влияющие на скорость гетерогенной реакции.

Основные понятия каталитической химии: катализаторы и катализ, гомогенный и гетерогенный катализ, промоторы, каталитические яды и ингибиторы. Механизм действия катализаторов.

Ферменты, как биологические катализаторы белковой природы.

Химическое равновесие. Химическое равновесие и константа равновесия. Смещение химического равновесия.

Демонстрации. Изучение зависимости скорости химической реакции от концентрации веществ, поверхности соприкосновения веществ. Проведение каталитических реакций разложения пероксида водорода, горения сахара, взаимодействия иода и алюминия.

Окислительно-восстановительные реакции. Процессы окисления и восстановления. Важнейшие окислители и восстановители. Метод электронного баланса для составления уравнений окислительно-восстановительных реакций. Методы ионно-электронного баланса (метод полуреакций).

Практическая работа 1. Скорость химической реакции, химическое равновесие.

TEMA 4.

ХИМИЧЕСКИЕ РЕАКЦИИ В ВОДНЫХ РАСТВОРАХ (7 ч)

Свойства растворов электролитов. Ионное произведение воды. Нейтральная, кислотная и щелочная среды. Водородный показатель. Индикаторы. Роль рН среды в природе и жизни человека. Ионные реакции и условия их протекания.

Кислоты и основания с позиции теории электролитической диссоциации. Общие химические свойства органических и неорганических кислот. Окислительные свойства концентрированной серной и азотной кислот.

Общие химические свойства щелочей. Химические свойства нерастворимых оснований.

Химические свойства солей/ Жёсткость воды и способы её устранения.

Гидролиз. Гидролиз солей и его классификация. Усиление и подавление обратимого гидролиза. Необратимый гидролиз бинарных соединений.

Демонстрации. Сравнение электропроводности растворов электролитов. Индикаторы и изменение их окраски в разных средах. Реакция «серебряного зеркала» для муравьиной кислоты. Гидролиз карбонатов, сульфатов и силикатов щелочных металлов, нитрата свинца(II) или цинка, хлорида аммония.

Лабораторные опыты. Реакции, идущие с образованием осадка, газа или воды, для органических и неорганических электролитов. Исследование среды растворов с помощью индикаторной бумаги.

Практическая работа 2. Гидролиз органических и неорганических соединений. Самостоятельная работа №2 Химические реакции.

TEMA 5.

ВЕЩЕСТВА И ИХ СВОЙСТВА.

МЕТАЛЛЫ (5/33 ч)

Щелочные металлы. Закономерности изменения физических и химических свойств в зависимости от атомного номера металла Единичное, особенное и общее в реакциях с кислородом, другими неметаллами, органическими и неорганическими кислотами и др. соединениями. Щёлочи, их свойства и применение.

Соли щелочных металлов, их представители и значение.

Бериллий, магний и щёлочноземельные металлы. Строениt атомов металлов IIA-группы. Свойства, применение щёлочноземельных металлов и их важнейших соединений (оксидов, гидроксидов и солей).

Временная и постоянная жёсткость воды и способы устранения каждого из типов.

Алюминий. Оксид, гидроксид и соли алюминия (в которых алюминий находится в виде катиона и алюминаты): их свойства и применение. Органические соединения алюминия.

Металлы побочных подгрупп: Физические и химические свойства этих металлов, их получение и применение.

Цинк. Хром. Марганец. Железо. Положение в периодической системе элементов Д. И. Менделеева и строения атомов . Его

Свойства, получение и применение важнейших соединений. Зависимость кислотно-основных свойств оксидов и гидроксидов металлов от степени его окисления. Получение, свойства и применение важнейших соединений железа(II) и (III): оксидов, гидроксидов, солей. Комплексные соединения железа. Электролиз. Электролиз растворов электролитов с инертными электродами. Электролиз растворов электролитов с и активным анодом. Практическое значение электролиза: электрохимическое получение веществ, электрохимическая очистка (рафинирование) металлов, гальванотехника, гальванопластика, гальванизация.

Коррозия металлов и способы защиты от неё. Виды коррозии по характеру окислительно-восстановительных процессов: химическая и электрохимическая. Способы защиты металлов от коррозии.

Демонстрации. Реакция окрашивания пламени солями щелочных металлов. Образцы металлов IIA-группы. Качественные реакции на катионы магния, кальция, бария. Реакции окрашивания пламени солями металлов IIA-группы. Получение жёсткой воды и устранение жёсткости. Получение и исследование свойств гидроксида хрома(III). Окислительные свойства дихромата калия. Окислительные свойства перманганата калия. Коррозия металлов в различных условиях и методы защиты от неё.

Лабораторные опыты. Получение и исследование свойств гидроксида цинка. Взаимодействие алюминия с растворами кислот и щелочей. Получение и изучение свойств гидроксида алюминия. Получение нерастворимых гидроксидов железа и изучение их свойств.

Практическая работа 4. Решение экспериментальных задач по темам: «Металлы» и «Неметаллы».

НЕМЕТАЛЛЫ (28/ 33 ч)

Водород. Двойственное положение водорода в периодической системе химических элементов. Изотопы водорода.

Химические свойства водорода: восстановительные (с более электроотрицательными неметаллами, с оксидами металлов, гидрирование органических веществ) и окислительные (с металлами I-A и II-A групп). Получение водорода в лаборатории и промышленности (конверсией).

Галогены. Элементы VIIA-группы — галогены: сравнительная характеристика. Закономерности изменения физических и химических свойств в VIIA-группе: взаимодействие галогенов с металлами, неметаллами, со сложными неорганическими и органическими веществами. Получение и применение галогенов.

Химические свойства галогеноводородных кислот: кислотные свойства, восстановительные свойства, взаимодействие с органическими веществами. Качественные реакции на галогенид-ионы.

Кислород. Общая характеристика элементов VIA-группы.

Химические свойства кислорода: окислительные и восстановительные.

Озон. Роль озона в живой природе.

Строение молекулы пероксида водорода, его физические и химические свойства. Получение и применение пероксида водорода.

Сера. Валентные возможности атомов серы. Аллотропия серы. Химические свойства серы: и восстановительные. Сероводород, как восстановитель, его получение и применение. Сульфиды. Распознавание сульфид-ионов.

Химические свойства оксида серы(IV). Сернистая кислота и её соли.

Серный ангидрид, его физические свойства, получение и применение. Химические свойства оксида серы(VI), как типичного кислотного оксида. Серная кислота. Химические свойства разбавленной серной кислоты и окислительные свойства концентрированной. Распознавание сульфат-анионов. **Азот.** Окислительные и восстановительные свойства. Строение молекулы аммиака, его физические свойства. Образование межмолекулярной водородной связи. Химические свойства аммиака как восстановителя.

Солеобразующие (N_2O_3, NO_2, N_2O_5) и несолеобразующие (N_2O, NO) оксиды.

Азотистая кислота и её окислительно-восстановительная двойственность. Соли азотистой кислоты — нитриты. Азотная кислоты. Её химические свойства. Получение азотной кислоты в промышленности и лаборатории. Нитраты (в том числе и селитры), их физические и химические свойства. Термическое разложение нитратов. Применение нитратов.

Фосфор. Химические свойства фосфора. Фосфин, его строение и свойства.

Оксиды фосфора(III) и (V). Фосфорные кислоты, их физические и химические свойства. Получение и применение ортофосфорной кислоты. Соли ортофосфорной кислоты и их применение.

Углерод. Углерод — элемент IVA-группы. Аллотропные модификации углерода, их получение и свойства. Сравнение свойств алмаза и графита. Химические свойства углерода: восстановительные и окислительные.

Оксид углерода(II): строение молекулы, свойства, получение и применение.

Оксид углерода(IV): строение молекулы, свойства, получение и применение.

Угольная кислота и её соли: карбонаты и гидрокарбонаты, — их представители и применение.

Кремний. Кремний в природе. Физические и химические свойства. Оксид кремния(IV), его свойства. Кремниевая кислота и её соли. Силикатная промышленность.

Демонстрации. Получение кислорода разложением перманганата калия и нитрата натрия. Получение оксидов из простых и сложных веществ. Разложение пероксида водорода. Доказательство наличия сульфид-иона в растворе. Качественные реакции на сульфит-анионы. Качественные реакции на сульфит- и Качественная сульфат-анионы. реакция на ион аммония. Коллекция минеральных удобрений. Коллекция природных соединений углерода. Кристаллические графита. решётки алмаза И Лабораторные опыты. Качественные реакции на галогенид-ионы. Ознакомление с коллекцией природных соединений серы. Качественная реакция на сульфат-анион. Получение углекислого газа, качественная реакция на карбонат-анион.

Самостоятельная работа №3 Вещества и их свойства.

Практическая работа 3. Получение газов и исследование их свойств.

Практическая работа 4. Решение экспериментальных задач по темам: «Металлы» и «Неметаллы».

Практическая работа № 5. Генетическая связь между классами органических и неорганически х соединений.

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ учебного курса «Химия» в 10 классе (2 часа в неделю)

№	Тема урока	Количе	Дата изучения		
п/п	теми уроки	Всего	Контрольные работы	Практические работы	
1	Введение. 2 часа. Предмет органической химии. Теория строения органических соединений А. М. Бутлерова, её основные положения	1	0	0	
2	Строение атома углерода. Ковалентная химическая связь. Валентные состояния атома углерода.	1	0	0	
3	Тема 1 Строение и клапссификация органических соединений. (6 часов). Представление о классификации органических веществ. Номенклатура (систематическая) и тривиальные названия органических веществ	1	0	0	
4	Изомерия в органической химии.Виды изомерии.	1	0	0	
5	Решение задач на нахождение молекулярной	1	0	0	

	формулы органических соединений.				
6	Решение задач на нахождение молекулярной формулы органических соединений.	1	0	0	
7	Обобщение и систематизация знаний о строении и классификации органических соединений.	1	0	0	
8	Самостоятельная работа «Строение и классификация органических соединений»	1	1	0	
	Тема 2 Химические реакции в органической химии. (3 часа).				
9	Типы химических реакций в органической химии. Реакции замещения, присоединения, отщепления, изомеризации. Ионный и радикальный механизмы реакций.	1	0	0	
10	Взаимное влияние атомов в молекулах органических веществ.	1	0	0	
11	Обобщение и систематизация знаний по теме «Химические реакции в органической химии».	1	0	0	
12	Тема 3. Углеводороды. (23 часа). Природные источники углеводородов. Нефть, природный газ, каменный уголь.	1	0	0	
13	Алканы: состав, строение и номенклатура. Физические свойства, получение.	1	0	0	
14	Химические свойства алканов. Реакции замещения.	1	0	0	
15	Химические свойства алканов. Применение.	1	0	0	
16	Практическая работа	1	0	1	

	«Качественный анализ				
	органических соединений»				
17	Алкены: строение, физические свойства, номенклатура.	1	0	0	
18	Химические свойства алкенов. Реакции присоединения, окисления, полимеризации.	1	0	0	
19	Химические свойства. Получение и применение алкенов.	1	0	0	
20	Обобщение и систематизация знаний по темам «Алканы» и «Алкены».	1	0	0	
21	Урок-упражнение по решению расчетных задач на нахождение молекулярной формулы орг.вещества.	1	0	0	
22	Алкины: физические свойства, строение, изомерия, номенклатура. Ацетилен — простейший представитель алкинов	1	0	0	
23	Химические свойства алкинов.	1	0	0	
24	Химические свойства алкинов. Применение.	1	0	0	
25	Алкадиены .Строение молекул, изомерия и номенклатура. Получение.	1	0	0	
26	Химические свойства алкадиенов. Каучуки. Резина.	1	0	0	
27	Циклоалканы. Строение, изомерия, номенклатура. Химические свойства.	1	0	0	
28	Обобщение и систематизация знаний по темам «Предельные и непредельные у/в»	1	0	0	
29	C/P №2 «Предельные и непредельные у/в».	1	1	0	
30	Арены: бензол и его	1	0	0	

гомологи. Физические свойства изомерия, помсиклатура. Химические свойства обензола. Способы 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
31 бензола. Способы получения аренов. 1 0 0 0 0 0 0 0 0 0		свойства, изомерия,				
1	31	бензола. Способы	1	0	0	
33	32		1	0	0	
Тема 4 Спирты и фенолы. (7 часов). Спирты: состав, физ.свойства, классификащия, изомерия. Получение. Химические свойства предельных одноатомных спиртов. Многоатомные спирты: этиленгликоль и глицерин, как важнейшие представители. Химические свойства, получение. Фенол: строение, физические свойства, получение. З8 физические свойства. Применение. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33	«Углеводороды». Упражнение по решению	1	0	0	
Тема 4 Спирты и фенолы. (7 часов). Спирты: состав, физ.свойства, классификация, изомерия. Получение. Химические свойства предельных одноатомных спиртов. Многоатомные спирты: этиленгликоль и глицерин, как важнейшие представители. Химические свойства, получение. Фенол: строение, физические свойства, получение. ЗВ физические свойства. Применение. Применение. Применение. Применение представильный по теме «Спирты и фенолы». Тема №5 Альдегиды и кетопы. (6 часов). Альдегиды: физ.свойства, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34	П/Р №2 «Углеводороды».	1	0	1	
35 физ.свойства, классификация, изомерия. Получение. 1		Тема 4 Спирты и фенолы.				
36 предельных одноатомных спиртов. 1 0 0 Многоатомные спирты: этиленгликоль и глицерин, как важнейшие представители. Химические свойства, полуение. 1 0 0 38 Фенол: строение, физические свойства, получение. 1 0 0 39 Химические свойства. Применение. 1 0 0 40 ПР/Р. №3 «Спирты и фенолы». 1 0 1 41 систематизация знаний по теме «Спирты и фенолы». 1 0 0 Тема №5 Альдегиды и кетоны. (6 часов). 1 0 0 42 Альдегиды: физ.свойства, классификация, номенклатура, изомерия. 1 0 0 43 Химические свойства альдегидов. Получение. 1 0 0	35	физ.свойства, классификация, изомерия.	1	0	0	
37 этиленгликоль и глицерин, как важнейшие представители. Химические свойства, полуение. 1 0 0 38 фенол: строение, физические свойства, получение. 1 0 0 39 Химические свойства. Применение. 1 0 0 40 ПР/Р. №3 «Спирты и фенолы» 1 0 1 41 систематизация знаний по теме «Спирты и фенолы». 1 0 0 Тема №5 Альдегиды и кетоны. (6 часов). 4 Альдегиды: физ.свойства, классификация, номенклатура, изомерия. 1 0 0 43 Химические свойства альдегидов. Получение. 1 0 0	36	предельных одноатомных	1	0	0	
38 физические свойства, получение. 1 0 0 39 Химические свойства. Применение. 1 0 0 40 ПР/Р. №3 «Спирты и фенолы». 1 0 1 Обобщение и систематизация знаний по теме «Спирты и фенолы». 1 0 0 Тема №5 Альдегиды и кетоны. (6 часов). 42 Альдегиды: физ.свойства, классификация, по номенклатура, изомерия. 1 0 0 42 Химические свойства альдегидов. Получение. 1 0 0	37	этиленгликоль и глицерин, как важнейшие представители. Химические	1	0	0	
39 Применение. 1 0 0 40 ПР/Р. №3 «Спирты и фенолы» 1 0 1 Обобщение и систематизация знаний по теме «Спирты и фенолы». 1 0 0 Тема №5 Альдегиды и кетоны. (6 часов). кассификация, поменклатура, изомерия. 1 0 0 42 классификация, номенклатура, изомерия. 1 0 0 43 Химические свойства альдегидов. Получение. 1 0 0	38	физические свойства,	1	0	0	
40 фенолы» 1 0 1 Обобщение и 0 0 0 41 систематизация знаний по теме «Спирты и фенолы». 1 0 0 Тема №5 Альдегиды и кетоны. (6 часов). Альдегиды: физ.свойства, классификация, номенклатура, изомерия. 1 0 0 42 классификация, номенклатура, изомерия. 1 0 0 43 Химические свойства альдегидов. Получение. 1 0 0	39		1	0	0	
41 систематизация знаний по теме «Спирты и фенолы». 1 0 0 Тема №5 Альдегиды и кетоны. (6 часов). Альдегиды: физ.свойства, классификация, номенклатура, изомерия. 1 0 0 42 классификация, номенклатура, изомерия. 1 0 0 43 Химические свойства альдегидов. Получение. 1 0 0	40	_	1	0	1	
кетоны. (6 часов). Альдегиды: физ.свойства, 42 классификация, 1 0 0 номенклатура, изомерия. 1 0 0 43 Химические свойства альдегидов. Получение. 1 0 0	41	систематизация знаний по	1	0	0	
42 Альдегиды: физ.свойства, классификация, номенклатура, изомерия. 1 0 0 43 Химические свойства альдегидов. Получение. 1 0 0		Тема №5 Альдегиды и				
42 классификация, номенклатура, изомерия. 1 0 0 43 Химические свойства альдегидов. Получение. 1 0 0		кетоны. (6 часов).				
альдегидов. Получение.	42	классификация,	1	0	0	
44 Химические свойства 1 0 0	43		1	0	0	
	44	Химические свойства	1	0	0	

	альдегидов. Качественные реакции.				
45	Кетоны: номенклатура, свойства.	1	0	0	
46	ПР/Р.№ «Альдегиды и кетоны».	1	0	1	
47	Систематизация и обобщение знаний о спиртах, фенолах и карбонильных соединениях. Решение расчетных задач.	1	0	0	
48	C/P № 3 «Спирты и фенолы, карбонильные соединения».	1	1	0	
	Тема №6 Карбоновые кислоты, сложные эфиры. (10 часов).				
49	Карбоновые кислоты: Свойства, строение, классификация, номенклатура.	1	0	0	
50	Химические свойства карбоновых кислот. Важнейшие представители.	1	0	0	
51	Практическая работа №5. «Карбоновые кислоты. Свойства раствора уксусной кислоты»	1	0	1	
52	Сложные эфиры: физ.свойства, строение, номенклатура, получение.	1	0	0	
53	Химические свойства сложных эфиров. Применение.	1	0	0	
54	Жиры. Состав и строение молекул, свойства. Мыла и СМС.	1	0	0	
55	Обобщение и систематизация знаний по теме «Карбоновые кислоты, сложные эфиры, жиры»	1	0	0	
56	С/Р №4 «Карбоновые кислоты и их производные».	1	1	0	
	Тема №7 Углеводы. (4				

	часа).				
57	Углеводы: состав, классификация. Важнейшие представители: глюкоза, фруктоза, сахароза	1	0	0	
58	Полисахариды. Крахмал и целлюлоза как природные полимеры	1	0	0	
59	Практическая работа №6 «Углеводы».	1	0	1	
60	Систематизация и обобщение знаний по теме «Углеводы». Решение расчетных задач.	1	0	0	
	Тема №8 Азотсодержащие органические вещества (8 часов).				
61	Амины: строение, классификация, номенклатура. Химические свойства аминов. Анилин.	1	0	0	
62	Аминокислоты как амфотерные органические соединения, их строение, номенклатура, получение, химические свойства. Белки ка природные биополимеры. Значение белков.	1	0	0	
63	Нуклеиновые кислоты.	1	0	0	
64	Практическая работа №7. «Амины, аминокислоты, белки».	1	0	1	
65	Практическая работа №8. «Идентификация органических соединений».	1	0	1	
	Тема №9. Биологически активные вещества. (2 часа).				
66	Витамины. Ферменты.	1	0	0	
67	Гормоны. Лекарства.	1	0	0	
68	Обобщение по темам курса.	1	0	0	
	ĮЕЕ КОЛИЧЕСТВО ЧАСОВ ІРОГРАММЕ	68			

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ учебного курса «Избранные вопросы химии» в 11 классе (2 часа в неделю)

№	Тема урока	Количе	ество часов		Дата изучения
п/п	тема урока	Всего	Самостоятель ные работы	Практические работы	
1	Атом - сложная частица.	1	0	0	
2	Состояние электронов в атоме. Квантовые числа.	1	0	0	
3	Строение электронных оболочек атомов. Электронные и электроннографические формулы атомов.	1	0	0	
4	Валентные возможности атомов.	1	0	0	
5	Периодический закон и периодическая система элементов в свете учения о строении атома.	1	0	0	
6	Самостоятельная работа №1 по теме «Строение атома». "Периодический закон".	1	0	0	
7	Химическая связь. Виды химической связи. Аморфные и кристаллические вещества. Ионная химическая связь.	1	0	0	
8	Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики	1	0	0	

	ковалентной связи.				
9	Металлическая связь. Водородная связь. Межмолекулярные взаимодействия. Биологическая роль водородной связи. Единая природа химической связи.	1	0	0	
10	Гибридизация орбиталей и геометрия молекул. Типы гибридизации.	1	0	0	
11	Теория строения химических соединений А.М.Бутлерова. Предпосылки создания. Основные положения теории строения химических соединений.	1	0	0	
12	Изомерия в органической и неорганической химии.	1	0	0	
13	Основные направления развития теории строения. Индукционный и мезомерный эффекты.	1	0	0	
14	Полимеры органические и неорганические. Классификация полимеров. Обзор важнейших полимеров. Способы получения полимеров.	1	0	0	
15	Чистые вещества и смеси. Растворы. Растворимость веществ.	1	0	0	
16	Решение задач. Способы выражения концентрации растворов: массовая доля, объёмная доля и мольная доля вещества, молярная концентрация.	1	0	0	
17	Классификация химических реакций в неорганической	1	0	0	

	химии и органической химии.				
18	Тепловой эффект реакций. Закономерности протекания химических реакций. Термохимические уравнения.	1	0	0	
19	Решение задач. Расчеты по термохимическим уравнениям. Вычисление теплового эффекта реакции по теплотам образования реагирующих веществ и продктов реакции.	1	0	0	
20	Классификация реакций по изменению степени окисления атомов.	1	0	0	
21	Составление уравнений ОВР методом электронного баланса.	1	0	0	
22	Скорость химических реакций. Факторы, влияющие на скорость реакции. Катализ. Понятие о катализаторе и механизме его действия.	1	0	0	
23	Расчеты с использованием понятия «Скорость реакции».	1	0	0	
24	Обратимость химических реакций. Химическое равновесие. Константа равновесия.	1	0	0	
25	Смещение равновесия. Факторы, влияющие на смещение равновесия. Принцип Ле Шателье.	1	0	0	
26	Практическая работа №1 по теме «Скорость химических реакций,	1	0	1	

	химическое равновесие».				
27	Электролитическая диссоциация. Кислоты, соли, основания в свете ТЭД. Степень диссоциации.	1	0	0	
28	Реакции, протекающие в растворах электролитов, произведение растворимости. Реакции ионного обмена.	1	0	0	
29	Водородный показатель рН раствора. Диссоциация воды. Ионное произведение воды. Среда водных растворов электролитов. Значение водородного показателя для химических и биологических процессов.	1	0	0	
30	Гидролиз. Гидролиз как обменный процесс. (гидролиз неорганических веществ).	1	0	0	
31	Гидролиз органических веществ.	1	0	0	
32	Практическая работа №2 по теме «Гидролиз»	1	0	1	
33	Самостоятельная работа №2 по теме «Химические реакции».	1	1	0	
34	Классификация неорганических веществ. Простые и сложные вещества. Благородные газы.	1	0	0	
35	Металлы. Положение в ПСХЭ, строение атома, физ. свойства, аллотропия, ряд напряжения металлов.	1	0	0	
36	Химические свойства металлов.	1	0	1	

37	Электролиз растворов и расплавов соединений Ме и его практическое значение.	1	0	0	
38	Металлы побочных подгрупп.(Fe, Cu, Ag, Zn, Hg, Cr, Mn). Нахождение в природе, получение и применение.	1	0	0	
39	Неметаллы. Положение в ПСХЭ, ЭО, аллотропия и её причины. Двойственное положение водорода.	1	0	0	
40	Химические свойства неМе: окислительные и восстановительные.	1	0	0	
41	Важнейшие оксиды, соответствующие им гидроксиды и водородные соединения неметаллов.	1	0	0	
42	Общая характеристика подгруппы галогенов. Сравнительная активность галогенов и их соединений. Галогеноводороды.	1	0	0	
43	Кислородсодержащие соединения хлора.	1	0	0	
44	Халькогены. Оксиды серы. Серная кислота и ее соли.	1	0	0	
45	Азот. Особенности азота и его соединений. Аммиак, соли аммония.	1	0	0	
46	Оксиды азота. Азотная кислота и ее соли.	1	0	0	
47	Кислоты неорганические и органические. Строение, номенклатура, классификация.	1	0	0	
48	Химические свойства органических и	1	0	0	

	неорганических кислот.				
49	Особенности свойств конц. серной и азотной кислот.	1	0	0	
50	Гидроксиды. Основания органические и неорганические. Строение, номенклатура, классификация.	1	0	0	
51	Химические свойства органических и неорганических оснований (Р и Н).	1	0	0	
52	Свойства бескислородный оснований: аммиака и аминов. Взаимное влияние атомов в молекуле анилина.	1	1	0	
53	Амфотерность неорганических соединений.				
54	Соли: средние, кислые, основные, двойные, смешанные.	1	0	0	
55	Понятие о комплексных соединениях. Применение и роль в природе.	1	0	0	
56	Понятие о генетической связи между классами органических и неорганических соединений.	1	0	0	
57	Обобщение и систематизация знаний по теме "Вещества и их свойства".	1	0	0	
58	Самостоятельная работа №3 по теме "Вещества и их свойства".	1	1	0	
59	Практическая работа №4 Генетическая связь между классами органических и	1	0	1	

	неорганических соединений.				
60	Практическая работа №5 Получение, собирание и распознавание газов.	1	0	1	
61	Практическая работа №6 Решение экспериментальных задач по неорганической химии.	1	0	1	
62	Практическая работа №7 Решение экспериментальных задач по органической химии.	1	0	1	
63	Решение задач: вычисление массы и объёма продуктов реакции по известной массе и объёму исходных веществ, содержащих примеси; Вычисление массы исходного в-ва, если известен практ.выход w% его от теоретически возможного; вычисления по химическим уравнениям, если одно из в-в дано в избытке.	1	0	0	
64	Решение задач: определение молекулярной формулы в-ва по W% этов; Определение ф-лы газообразного в-ва по относительной плотности и w% э-тов: Определение формулы по массе (объёму) продуктов реакции.	1	0	0	
65	Химия и производство. Научные принципы важнейших производств.	1	0	1	

66	Производство аммиака и метанола в сравнении.	1	0	0	
67- 68	Обобщение.	2	0	0	